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Valero-Cuevas FJ, Venkadesan M, Todorov E. Structured variability
of muscle activations supports the minimal intervention principle of
motor control. J Neurophysiol 102: 59–68, 2009. First published April
15, 2009; doi:10.1152/jn.90324.2008. Numerous observations of struc-
tured motor variability indicate that the sensorimotor system preferen-
tially controls task-relevant parameters while allowing task-irrelevant
ones to fluctuate. Optimality models show that controlling a redundant
musculo-skeletal system in this manner meets task demands while min-
imizing control effort. Although this line of inquiry has been very
productive, the data are mostly behavioral with no direct physiological
evidence on the level of muscle or neural activity. Furthermore, biome-
chanical coupling, signal-dependent noise, and alternative causes of trial-
to-trial variability confound behavioral studies. Here we address those
confounds and present evidence that the nervous system preferentially
controls task-relevant parameters on the muscle level. We asked subjects
to produce vertical fingertip force vectors of prescribed constant or
time-varying magnitudes while maintaining a constant finger posture. We
recorded intramuscular electromyograms (EMGs) simultaneously from
all seven index finger muscles during this task. The experiment design
and selective fine-wire muscle recordings allowed us to account for a
median of 91% of the variance of fingertip forces given the EMG signals.
By analyzing muscle coordination in the seven-dimensional EMG signal
space, we find that variance-per-dimension is consistently smaller in the
task-relevant subspace than in the task-irrelevant subspace. This first
direct physiological evidence on the muscle level for preferential control
of task-relevant parameters strongly suggest the use of a neural control
strategy compatible with the principle of minimal intervention. Addition-
ally, variance is nonnegligible in all seven dimensions, which is at odds
with the view that muscle activation patterns are composed from a small
number of synergies.

I N T R O D U C T I O N

The nature of and causes for asymmetries in variability during
motor performance is an integral part of the study of motor
redundancy. This line of research has been fruitful in proposing
several theories for computational mechanisms underlying senso-
rimotor function such as the uncontrolled manifold, minimal
intervention, and optimal feedback control. A characteristic fea-
ture of these proposed neural control strategies is the presence of
larger variance in task-irrelevant directions for a wide range of
motor behaviors (Bernstein 1967; Li et al. 1998; Scholz and
Schoner 1999; Todorov 2004; Todorov and Jordan 2002). This

observed asymmetry in motor variability is often quantified using
the “uncontrolled manifold” method for comparing task-relevant
and -irrelevant variance (Scholz and Schoner 1999). For example,
there is compelling evidence that the nervous system uses a
strategy that compensates for variability in forces produced by
individual fingers to reduce variability in the task-relevant target
of total force (e.g., Latash et al. 2001, 2002; Scholz and Schoner
1999). Such asymmetry in variability is also predicted by the
“minimal intervention” principle whereby the neural controller
corrects deviations from the average behavior only when they
interfere with the task goals (Liu and Todorov 2007; Todorov
2004; Todorov and Jordan 2002). Although these neural control
strategies are demonstrated in behavioral measures and not elec-
trophysiological measures such as EMG (e.g., fingertip forces or
during shifts in the center of pressure of a standing subject), the
origin of behavioral variability presumably lies in muscle forces
and EMGs.

Given that previous studies were mostly restricted to behav-
ioral and kinematic measurements, a direct link to physiology
remains to be made. The only exception in this regard is an
uncontrolled manifold analysis of postural muscle activity
during shifts in the center of pressure of a standing subject
(Krishnamoorthy et al. 2003). However, that electromyo-
graphic (EMG) analysis was performed by first projecting the
EMG data to a low-dimensional subspace, and so it remains
unclear whether the full covariance in muscle activity was
consistent with the hypothesis of task-relevant control. Further-
more, by not recording from all the muscles of the system, the
nature and properties of the full motor command and the
subspaces wherein its variability resided could not be studied.
These limitations arise because it is practically impossible to
record from all muscles involved in a sit-to-stand motion.
Therefore we chose to examine the physiological causes of
variability in motor performance in a simpler task in which all
relevant muscle activities could be measured.

It is important to note that even when motor variability is
convincingly shown to be structured, it can originate without
any task-relevant control or it can be structured for a number of
reasons. We now underscore several previously unaddressed
confounds unrelated to task-relevant control. 1) Musculo-skel-
etal coupling, especially in the tendons of the hand (Valero-
Cuevas et al. 1998, 2007), can induce complex correlations on
the behavioral level without correlated drive to individual
muscles. We avoid this confound by recording muscle activity,
as approximated by fine-wire EMGs. 2) Motor noise is known
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to be signal-dependent (Harris and Wolpert 1998; Sutton and
Sykes 1967) and can therefore create structure in the variability
that does not directly reflect the control law. For example,
endpoint errors in reach are larger in the movement direction
(Gordon et al. 1994) not because that direction is task-irrele-
vant but because muscles pulling along the movement axis are
more active and therefore more strongly affected by signal-
dependent noise. Here we rule out such confounds by showing
that a signal-dependent noise model does not capture the
variability pattern in our experimental data. 3) The motor
system may purposefully vary task-irrelevant aspects of the
movement from trial to trial, so as to minimize fatigue or
explore different control strategies. Such trial-to-trial variabil-
ity can inflate measures of task-irrelevant variability without
having any origins in the control strategy. This type of con-
found is avoided here by analyzing the moment-to-moment
fluctuations in motor output within a trial.

In this work we use fine-wire electrodes to simultaneously
record the electrical activity in all muscles of a finger to test the
hypothesis that the structure in the variability of muscle acti-
vations reduces variability in a task-relevant manner.

M E T H O D S

Experimental design and data recording

Eight healthy volunteers (age 18–27 yr, 5 male, 3 female) first per-
formed a finger-tapping experiment unrelated to the present study (Ven-
kadesan and Valero-Cuevas 2008) followed by the experiment described
here. This study was approved by Cornell University’s Committee on
Human Subjects. All analyses were performed using MATLAB (The
MathWorks, Natick, MA). As shown in Fig. 1A, subjects grasped a
metallic dowel fixed to ground with their thumb, middle, ring, and little
finger and placed the fingertip of the index finger on center of the
recording surface of the rigidly held force sensor with the distal phalanx
in a vertical orientation. The force sensor was held by a robotic arm
(AdeptSix 300, Adept Technologies) and adjusted for each subject to
replicate the finger posture of 30° of flexion at the metcarpophalangeal
joint, 30° of flexion at the proximal interphalangeal joints, and 15° of
flexion of the distal phalangeal joints measured with a clinical goniom-
eter. Defining the location of the hand and fingertip in three dimensions,
plus the orientation of the distal phalanx in this way, suffices to replicate
the posture of the fingers across trials in this isometric task.

EMGs

Fine-wire intramuscular electrodes were placed in all seven mus-
cles acting on the index finger as described elsewhere (Burgar et al.
1997). The seven muscles actuating the index finger are flexor
digitorum profundus, flexor digitorum superficialis, extensor indicis
proprius, extensor digitorum communis, first lumbrical, first dorsal
interosseous and first palmar interosseous. We recorded and digitally
processed EMG using fine-wire intramuscular electrodes from all
seven muscles using previously reported techniques (Valero-Cuevas
et al. 1998; Venkadesan and Valero-Cuevas 2008). Amplified EMGs
were each sampled at 2,000 Hz and, to avoid aliasing, band-pass
filtered (20–800 Hz) using the filters in the preamplifiers (Neurodata
Amplifier System, Model 15A, Grass-Telefactor, West Warwick, RI)
before storing them for processing as described in the following
section. Maximal voluntary contractions (MVC) of individual muscles
were done immediately before and after fingertip force production
with the index finger braced in the same posture used during the study.
As in prior work, we asked subject to perform three maximal volun-
tary contraction trials to maximally activate each muscle while we
provided EMG feedback as a sound delivered through speakers with

increasing sound level indicating an increasing level of EMG ampli-
tude from the target muscle. Activating muscles maximally in isola-
tion can be difficult for subjects given the complexity of the hand, and
obtaining maximal EMG activity in each muscle does not necessitate
eliminating EMG activity from other muscles. All subjects reported
that their contractions were maximal, and we looked through all MVC
trials to find the maximal activation of each muscle in any task as in
prior work (Burgar et al. 1997; Valero-Cuevas et al. 1998; Venkade-
san and Valero-Cuevas 2008).

Signal processing

Our analysis required estimating the instantaneous tension gener-
ated by each muscle that was then used to estimate the contribution of
that muscle to fingertip force. Using either the raw or full-wave
rectified and unit-normalized EMG voltage by itself would distort the
relationship between that estimated neural command and fingertip
force because small and large muscles appear to contribute equally to
fingertip force. Therefore we focused on estimating “normalized
muscle tension” (i.e., the percentage of maximal force each muscle is
producing), where muscle tension is known to be a low-pass filtered
version of EMG due to activation-contraction dynamics (Zajac 1989).
To arrive at estimates of normalized muscle tension, the raw EMG
voltages collected at 2,000 Hz and band-pass filtered (20–800 Hz)
were full-wave rectified then each channel was normalized by the
peak value of the band-passed EMG voltage recorded during MVC
trials of that muscle. This normalization is an accepted means to
compensate across EMG channels for differences in amplifiers setting,
proximity to the active motor unit pools, electrode impedance, etc. It
provides a signal that is scaled to the maximal output of that muscle
(Burgar et al. 1997; Valero-Cuevas 2000; Valero-Cuevas et al. 1998;
Venkadesan and Valero-Cuevas 2008). To emulate the low-pass
filtering effect of activation-contraction dynamics, we then passed the
full-wave-rectified, band-pass filtered, normalized EMG signals
through a fourth-order Butterworth causal filter with time constants
0.03 and 0.23 s. These two time constants were found by an algorithm
minimizing the mismatch between measured fingertip forces and
fingertip forces predicted from the processed EMGs (the prediction
method is described in the following text). We also used cross-
correlation to analyze the time lag of the force predictions and found
that the lag was indistinguishable from zero for the chosen time
constants. Note that the 0.23 s time constant is unusually large for
isolated muscles. However, finger muscles tend to have long tendons
relative to their fiber lengths, which are known to increase the
effective time constant of the musculo-tendon actuator (Zajac 1989).
We then down-sampled from 2,000 to 100 Hz by averaging within
nonoverlapping bins of 0.01 s and expressed in % MVC (Fig. 1C).
The fingertip force data were also down-sampled to 100 Hz by
averaging within 0.01 s bins. Henceforth “EMG” and “force” refer to
these 100-Hz processed data. Obtaining this envelope of the normal-
ized muscle tension by regressing an optimally low-pass filtered
version of the EMG signal on the fingertip force produces the best
input-output mapping (in the least-squares sense) that suffices to study
the structure of motor variability. This “black-box” approach circum-
vents the problems caused by introducing large numbers (�50) of
unknown parameters necessary to perform the same analysis using a
detailed physiological model.

Fingertip force measurement and analysis

The index fingertip was fitted with a thimble that had a small
polished Teflon sphere (�3 mm diam) attached to it. The sphere made
contact with a force-sensing plate which recorded the three-dimen-
sional (3D) isometric force vector. The plate was covered with
300-grit sand paper, explicitly defining an isometric force production
task with a friction cone of �30° half-angle. Seven EMGs (see Signal
processing) and three fingertip force components were recorded at
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2,000 Hz. The task was to produce an instructed pattern of force,
normal to the sensor surface, without deviating from a prescribed,
comfortable finger posture (neutral abduction, proximo-distal joint
angles of 30, 45, and 15° flexion, respectively). The instructed force
pattern was displayed on a monitor as a function of time. It was
randomly generated for every subject and trial and consisted of three
phases: an initial hold phase of 2 N for 4 s (t � 0–4 s), a random,
slowly varying phase for 10 s (t � 4–14 s), and a final hold phase for

10 s (t � 14–24 s). The slowly varying phase was generated as
follows. We drew five random numbers from the uniform distribution
over the interval [0,1] and formed a sequence of six numbers by prefixing
the five random numbers with 0. These six numbers represent normalized
force values (between 0 and 1) at every 2 s in the interval t � 4–14 s.
Then we used a cubic spline interpolation to calculate a normalized force
value at every millisecond for t � 4–14 s (i.e., 10,000 samples). Finally,
we scaled this smooth normalized time-series to lie between 2 and 15 N.
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FIG. 1. A: experimental paradigm. As in
Venkadesan and Valero-Cuevas (2008), the
subject grasped a metallic dowel fixed to
ground with their thumb, middle, ring, and
little finger and placed the fingertip of the
index finger on the center of the recording
surface of the rigidly held force sensor, with
the distal phalanx in a vertical orientation.
Defining the location of the hand and finger-
tip in 3 dimension (3D), plus the orientation
of the distal phalanx, in this way suffices to
replicate the posture of the fingers across
trials in this isometric task. B: measured
fingertip forces (thick, red), predicted forces
from the linear normalized muscle tension-
to-force model (dotted, black), and instructed
normal force (thin, blue) for a typical trial.
Each trial started with a brief preloading
phase which is not shown (and is not used in
the analyses). C: processed normalized mus-
cle tensions for the 7 muscles acting on the
index finger, for the same trial shown in
subplot B. FDP, flexor digitorum profundus
(slip to the index finger); FDS, flexor digito-
rum superficialis (slip to the index finger);
EIP, extensor indicis proprius; EDC, exten-
sor digitorum communis (slip to the index
finger); LUM, 1st lumbrical; DI, 1st dorsal
interosseous; and PI, 1st palmar interosse-
ous.
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The value of this slowly varying force at t � 14 s was set as the
force-level for the final hold-phase. For an example of one such randomly
generated target-force time series, see Fig. 1B. The instantaneous normal
force produced by the subject was displayed as a small cross moving over
the instructed pattern. This enabled subjects to perform the task accu-
rately (a typical trial is shown in Fig. 1B). Note that while the normal
force (Z) had to match the instructed pattern, the forces tangential to the
sensor surface (X,Y) had to remain within a large friction cone defined by
the thimble on sand paper to avoid slip. The friction cone was large
enough that we never saw slips. Only the component normal to the
surface was shown to the subject. The tangential components were only
constrained by the friction cone. Thus the subject was required to control
all three force vector components, the normal component to track the
instructed pattern—while maintaining the tangential components low
enough to stay within the friction cone. In recent study using a similar
finger-pressing task, Cole (2006) has shown that young adults will control
the direction of the fingertip force to be close to the surface normal even
though there was no feedback provided on the tangential components.
Contrast this with a hypothetical rigid coupling between the fingertip and
the force sensor where only the normal force would have to be controlled
(we did not test this case). We collected five to six usable trials per subject
(for a total of 44 trials across all subjects). The usable trials were defined
as trials without recording artifacts (identified by visual inspection of the
raw EMG voltages). Then we performed a test for MVC in the same
posture as the experiment by asking subjects to push against the exper-
imenter’s hand as hard as possible in different directions chosen to elicit
maximal activity in each muscle.

Prediction of force given normalized muscle tension

The prediction of fingertip force given EMG was based on the
linear model

fn(t)�An * en(t)�bn

where fn(t) is the measured 3D fingertip force, en(t) is the 7D vector
of measured normalized muscle tensions, An is a 3�7 time-invariant
matrix mapping normalized muscle tensions to fingertip force, bn is a
time-invariant 3D force bias vector (to account for the finger’s weight,
preloading, etc.), t is the time index within the trial (varying from 0 to
20 s in discrete steps of 0.01 s), and the subscript n denotes the trial
number. Recall that normalized muscle tension refers to the estimates of
instantaneous percentage of maximal force generated by each muscle as
inferred from EMGs. Linearity and time invariance of the biome-
chanical structure of the finger as well as force-length and -ve-
locity properties of muscle are valid assumptions as long as the
muscle moment arms or posture are not changing, which is the case
here (Valero-Cuevas 2000; Valero-Cuevas et al. 1998). The un-
known model parameters An and bn should be constant for a given
subject. However, to avoid over-fitting, we computed these param-
eters using leave-one-out cross-validation—that is, we used data
from all trials performed by the same subject except for the trial n
being analyzed. The variations in An and bn were small, and
repeating all analyses with the average values A and b produced
results that were almost identical to those shown in the paper. The
same results were also found using a Bayesian analysis (see
Supplementary notes1). As in our previous work, the linear model
predicted the measured fingertip force rather well (Valero-Cuevas
et al. 1998). For each trial, we computed the R2 between the
measured and predicted normal force. The median over trials was
0.91, meaning that the measured normalized muscle tension vari-
ance explained 91% of the variance in the measured normal fin-
gertip force. This is not surprising in principle given that changes

in force are caused by muscle activation. However, this remarkable
predictive ability of measured normalized muscle tension is not
typical in the literature because EMG recordings often do not
include all muscles, are not selective enough (especially surface
recordings), or are too noisy to allow such accurate prediction.

Analysis of variability patterns

The goal of this analysis was to test whether the variance in the
normalized muscle tension across all seven muscles had a structure
indicative of task-relevant preferential attenuation. In this work, we
use the qualitative term “variability” to mean the temporal changes in
normalized muscle tension, and the quantitative term “variance” to
mean the statistical metric of dispersion (i.e., SD squared). We
performed this analysis of variability separately for the constant (Fig. 2,
A–C) and time-varying phases (D–F). In each condition, we tested
three alternative metrics of variance: “full,” which considers interac-
tions within and across muscles, calculated by the covariance matrix;
“diagonal,” which only considers within-muscle interactions, calcu-
lated by the autocovariance matrix (the multidimensional version of
autocorrelation with diagonal elements identical to the full covariance
and all off-diagonal elements set to 0); and “signal-dependent noise”
(SDN), which estimates the variance attributable to mean muscle activa-
tion level. These covariance matrices were calculated as follows.

In the constant phase, we simply took the normalized muscle tension
data for each trial (en) and computed three trial-specific 7 � 7 matrices:
First, the covariance matrix Pn (i.e., full variance); second, the matrix Dn

(i.e., diag variance) the diagonal elements of which were the same as in
Pn but the off-diagonal elements were set to 0. Dn is therefore the
covariance of normalized muscle tensions that are individually as variable
as the recorded signals but are uncorrelated with each other (i.e., diagonal
variance or auto-covariance); finally, we formed a diagonal matrix Sn

(i.e., SDN variance) with diagonal elements proportional to the mean
muscle activations squared. This is the covariance matrix expected from
signal-dependent noise—a well-documented characteristic of the motor
system (Harris and Wolpert 1998; Sutton and Sykes 1967). This propor-
tionality constant was determined separately for each subject, by fitting a
linear model that predicts the SDs of the normalized muscle tensions
given their means. Averaged over subjects, the SD of the normalized
muscle tension was 8% of the mean.

In the time-varying phase, the calculation of these covariance
matrices was complicated by the fact that the mean was time varying
and could not be measured directly (the instructed patterns were not
repeated so as to avoid rote motor pattern repetition by the subjects
and explore a richer set of motor commands). However, it was
possible to estimate the time-varying mean using the fact that, as we
have shown in the same experimental paradigm (Valero-Cuevas 2000;
Venkadesan and Valero-Cuevas 2008), subjects scale the activity of
all muscles together to modulate the force. For each muscle, we
computed what the “ideal” pattern should be according to this scaling
strategy. To do so, we fitted another linear model predicting each
muscle’s normalized tension as a function of the instructed force. That
model had two unknown scalar parameters computed separately for
each subject and muscle. The predicted normalized muscle tension
was then subtracted from the actual normalized muscle tension, and
the residuals were used to compute the matrices Pn, Dn, Sn.

The second step in our analysis consisted of calculating how the
output force was affected by the variance in the muscle coordination
pattern estimated using the Pn, Dn, Sn matrices. More specifically, our
hypothesis is expressed mathematically as testing whether the vari-
ance in normalized muscle tension (as quantified Pn, Dn, Sn matrices)
is preferentially channeled into the null space of the biomechanical
transformation (i.e., the matrix An). See Valero-Cuevas (2009) and
Strang (1980) for a review of these concepts. Briefly, if the variability
of muscle activations is structured in such a way to reduce its effect
on the relevant elements of the task (in this case, the magnitude of the1 The online version of this article contains supplemental data.
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three components of force), then the majority of the variability in
normalized muscle tension is part of the family of motor commands
that do not cause a change in the force normal to the surface (i.e., they
belong to the nullspace of the biomechanical transformation An). The
nullspace can be described intuitively as the task-irrelevant subspace:
the set of all possible normalized muscle tension combinations that do
not produce a fingertip force output. Thus normalized muscle tension
variations in that task-irrelevant subspace do not affect the fingertip
force. Once the Pn, Dn, Sn matrices for the constant and time-varying
phases were computed, we compared the projected variance per
dimension in the task-relevant subspace (row space of the An matrix)
versus task-irrelevant subspace (i.e., nullspace of the An matrix) of the
7D normalized muscle tension space, separately for each trial. The
task-relevant subspace is found directly as the subspace spanned by
the three 7D row vectors of the matrix An. Recall that An maps 7D
normalized muscle tension signals into the three components of the
fingertip force vector (1 normal and 2 tangential to the surface). Note
that this task-relevant 3D subspace2 is by definition embedded in

the 7D normalized muscle tension space, and the three row vectors
define the set of all possible normalized muscle tension combinations
that produce a fingertip force output (Valero-Cuevas 2009; Valero-
Cuevas et al. 1998). Thus this is the subspace in which normalized
muscle tension variations cause variations in fingertip force. The
task-irrelevant subspace is the 4D complement of the 3D task-relevant
subspace, namely, the 4D null space3 of An. Last we compared how
the variances (Pn, Dn, or Sn) project onto the task-relevant versus the
task-irrelevant subspaces. For each subspace, we formed an orthonor-
mal coordinate frame, computed the projection of the variance of the
normalized muscle tension data projected on each axis of this coor-
dinate frame, and averaged over the number of axes (3 for the
task-relevant and 4 for the task-irrelevant subspaces) to obtain a scalar
variability index for the corresponding subspace as done in Scholz and
Schoner (1999). The projected variance is calculated by the formula:
uT * V * u, where V is a covariance matrix (Pn, Dn, or Sn) and u is a
unit vector from the orthonormal bases (i.e., 1 of the axes of the
coordinate frame). An important mathematical fact is that the vari-
ability index computed this way does not depend on the choice of

2 By 3D we do not mean Cartesian space. Rather that three 7D vectors (each
a row vector of the A matrix) define a subspace in 7D space whose dimen-
sionality is 3 (Strang, 1980).

3 By 4D we mean that four 7D vectors (each a basis vector of the nullspace
of the A matrix) define a subspace in 7D space whose dimensionality is 4.
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coordinate frame for a given subspace but only on the subspace itself;
in other words, the variability index is coordinate-free. Finally, we
divided the task-relevant variability index by the task-irrelevant index.
The resulting dimensionless variability ratio should be statistically
smaller than 1 to support the hypothesis that the nervous system
preferentially controls task-relevant parameters.

R E S U L T S

Variability structure reveals preferential control of
task-relevant parameters

The results in Fig. 2, A and D, confirm our hypothesis for
both the constant and time-varying phases, respectively. The
graphs show the means and SE of the ratio defined in METHODS

for each type of covariance matrix. The mean ratios for the
eight individual subjects were averaged to produce the grand
means and SE shown in Fig. 2, A and D; ■ are cases where the
ratio was significantly lower than 1 (t-test, P � 0.01), c are
cases where the difference was not statistically significant. In
agreement with our hypothesis, both the full covariance Pn and
the diagonal covariance D are structured such that variance per
dimension is smaller in task-relevant compared with task-
irrelevant subspaces. This is not the case for the signal-
dependent noise covariance matrix S, therefore the task-rele-
vant reduction in variance is not a trivial consequence of
signal-dependent noise. In the constant phase (Fig. 2A), the
ratio (0.73 � 0.08) was significantly smaller for the full
covariance compared with the diagonal covariance (paired
t-test, P � 0.01), therefore correlations among muscles con-
tributed to the effect. The latter difference was not statistically
significant in the time-varying phase (Fig. 2D). But recall that
our calculation was based on additional assumptions in the
time-varying phase and is therefore less reliable. Nevertheless
this result shows the same trend for both constant and time-
varying phases and confirms that the variability ratios for both
phases are statistically lower than 1. Figures 2, C and F, and 3,
A and B, show the loadings for all principal components for
both the constant and time-varying phases. The loadings for
each principal component indicate only the trends in variance
among muscles (but not on their mean values in the coordina-
tion pattern) in order of decreasing importance (from 1st
though 7th). Note that both the variance explained by each
principal component agree in spite of the need to make addi-
tional assumptions to perform this analysis on the time-varying
phase (see METHODS). The loadings of the first principal com-
ponent also agree for both phases, with some differences in
magnitude (but not in sign) for mostly the first palmar in-
terosseous, the extensor digitorum communis and flexor digi-
torum superficialis. Last, Fig. 4 shows the histogram composed
of the ratio of task-relevant:task-irrelevant variance for the full
covariance matrix from all trials. This figure shows that the
variability ratio was �1 for 80% of the trials. Thus we can
conclude that our hypothesis holds for the neural control of
both constant and time-varying force production.

Fluctuations in muscle “coactivation” are the largest source
of variability

We also performed principal-component analysis (PCA) on
the full covariance matrix (Pn) averaged over all trials in the
constant phase of force production. We found one large com-

ponent (Fig. 2B) accounting for � 50% of the variance, a
second for 14%, followed by five smaller components each
accounting for �7% on average (Fig. 3A). Figure 2C shows the
loading of the first principal component on the seven muscles.
The fact that all loadings are all the same sign suggests that a
substantial source of variability is positively correlated fluctu-
ations—a form of muscle “coactivation.” Note however that
hand muscles do not have a simple agonist-antagonist arrange-
ment (Valero-Cuevas 2005, 2009; Valero-Cuevas et al. 1998),
and furthermore the loadings in Fig. 2C are far from being
equal, so the term coactivation should not be taken literally to
mean simply joint stiffening via agonist-antagonist co-contrac-
tion. Rather the loadings of the first principal component for
both the constant and time-varying phases indicate that all
muscles contribute to the overall variance, and this variance
has a structure favoring its prevalence in the task-irrelevant
subspace (Fig. 2, A and D). There is, of course, some amount
of joint stiffening naturally due to this muscle coactivation, but
as we have shown before (Valero-Cuevas 2005, 2009; Valero-
Cuevas et al. 1998), the biomechanical arrangement of finger
muscles is such that, for example, coactivation of flexors and
extensors is biomechanically necessary to direct the fingertip
force well and not indicative of a “stiffening strategy.”

Our analysis using PCAs was based on covariance matrices that
can at most capture second-order correlations (i.e., in the off-
diagonal elements). It is possible, however, that the variance of
muscle activations has more complex statistical structure. Thus
we also applied independent-component analysis (FastICA with
tanh nonlinearity) (Hyvarinen et al. 2001), which looks for linear
projections of the data that are statistically independent and not
merely uncorrelated. PCA and ICA are based on different math-
ematical models and tend to find different solutions—which is
why ICA has become so popular recently despite the increased
computational requirements (Hyvarinen et al. 2001). In our data,
however, the first PCA and first ICA components were very
similar (Fig. 2C), indicating that the dominant component we
found represents not only the direction of maximal variance but
also an independent source of variation. There are differences
between the two methodologies, mostly for extensor indices pro-
prius, but the loadings of the first component for the two methods
were of the same sign. The agreement of PCA and ICA on higher
components was not as good, but those components explain
comparatively little variance.

For completeness, we also report the magnitude and direction
of the fingertip force vectors. For the constant phase, the mean
normal force was 8.88 � 0.42 N, and the mean tangential force
was 0.83 � 0.12 N. The angular deviation of the fingertip force
vector from the vertical was 2.77 � 0.59°. The mean maximal
angular deviation was 5.72°. For the time-varying phase, the mean
normal force was 9.20 � 3.15 N (the large SD reflects the
time-varying target), and the mean tangential force was 0.75 �
0.31 N. The angular deviation of the fingertip force vector from
the vertical was 2.34 � 0.67°. The mean maximal angular devi-
ation was 4.92°. Note that in all cases, subjects stayed well within
the large friction cone of �30°, the half angle afforded by the
300-grit sand paper covering the force sensing surface.

D I S C U S S I O N

Our hypothesis of smaller variance in the task-relevant
subspace was confirmed, and the possibility that the phenom-
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enon is a trivial consequence of signal-dependent noise was
ruled out. Unlike previous behavioral measurements where the
structure of the variability is affected by biomechanical cou-
pling, such coupling was not an issue here. The possibility that
trial-to-trial variability in the task-irrelevant subspace is in-
flated by fatigue-related or exploratory strategies was not an
issue either because we computed variance within trials. There-
fore this work is the first direct physiological evidence for
preferential control of task-relevant parameters that strongly
suggest the use of a neural control strategy compatible with the
principle of minimal intervention.

The main result of the present study is an extension of a
similar preliminary finding originally detected in data from our
previous experiment (Valero-Cuevas 2000). That finding was
reported in a conference format (Valero-Cuevas and Todorov,

Neural Control of Movement 13 2003) and served as motiva-
tion to conduct this expanded study. The previous experiment
only included a constant phase, with shorter duration (�2 s);
however, the number of trials was larger and the directions of
instructed force were varied. In that preliminary report, the
variance ratio for the full covariance was 0.62 � 0.08 (mean �
SE), which was significantly different from 1 (t-test, P � 0.01).
The corresponding ratio in the present study is given by the
leftmost bar in Fig. 2A; which is 0.73 � 0.08.

Our experiment has some limitations, which point to direc-
tions for future work but do not challenge the validity of our
results. First, the limited time window of opportunity, charac-
teristic of experiments with fine-wire electrodes, prevented us
from repeating the dynamic templates. This complicated the
variance analysis in the time-varying phase. Second, subjects
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had to control the fingertip forces in all three directions
accurately, and so the task-relevant 3D subspace was quite
generic. This issue could be addressed in future work by rigidly
fixing the fingertip to the target surface—making the fine
control of tangential forces unnecessary, and thus creating a
less generic 1D task-relevant subspace. However, investigating
motor variability in unloaded finger movements and during
object manipulation task would be stronger tests of whether
this approach to understanding variability is useful in tasks of
daily life. Third, in isometric tasks, it is difficult to separate
state variables from control variables—a separation that is
essential if feedback control analyses are to be applied (recall
that a feedback control law is a mapping from states to
controls). Movement tasks would be more suitable for such
analyses. Near-isometric tasks or posture maintenance tasks in
which small postural fluctuations are recorded are also suitable
and may allow estimates of stiffness modulation. Last, the
assumptions in the analysis of the time-varying phase could be
relaxed by embedding an identical time-varying pattern within
a sequence of random patterns. However, such an approach
would be open to the criticism that our results may not apply
in general (i.e., to a rich variety of random force patterns as
done here), and would unavoidably lengthen these invasive
experiments. These are all extensions that we hope to explore
in future work. More generally speaking, this work also un-
derscores the need to develop methods to study physiological
causes of motor output variability for general motor tasks
without the need to record from all relevant muscles. The

limitations of the use of EMG recordings are well known, and
we have discussed them in this context before (Valero-Cuevas
et al. 1998; Venkadesan and Valero-Cuevas 2008). For exam-
ple, if the estimate of normalized muscle tension from fingertip
force has a bias there could be an offset in the normalized
muscle tension estimate that would artificially increase the
apparent variance. However, EMG recordings are the best tool
we have at the moment to estimate descending drive to muscles
and our results are strong enough to suggest that the limitations
of EMG did not overwhelm the effect we detected.

On a related note, one might think that correlated drive to
motor units of hand muscles (for a review of this extensive
literature, see Schieber and Santello 2004) is a confound in this
study. However, this is not so. Correlated drive is a mechanis-
tic explanation of the same phenomenon we are trying to
explain in computational terms. Every computational model
must have an underlying neural mechanism. Indeed if the
control laws used by the sensorimotor system were task-
specific in the way we envision (Liu and Todorov 2007;
Todorov 2004), their neural implementation would involve the
kind of correlated drive that has been reported—with the
caveat that the correlations would have to be task-specific. So
these two explanations are complementary: one tells us what
the control law is and why, the other tells us how that control
law is implemented.

We avoid discussing the individual off-diagonal entries (i.e.,
pair-wise interactions) or rows (i.e., muscle groups) of the full
covariance matrix. This is because it is imperative to note that
considering the low-dimensional trends in data represented by
those entries (such as pair- or group-wise correlations) can lead
to overinterpretation of the causality behind muscle interac-
tions. Even if such correlations are detected on a restricted
subset of the entire data, the causal reasons for them cannot be
interpreted in a mechanically sound manner. This is because
the complicated musculo-skeletal structure of the hand obvi-
ates certain traditional notions of agonist-antagonist pairs,
flexor versus extensor muscle groups, co-contraction, etc.
(Valero-Cuevas 2005, 2009; Valero-Cuevas et al. 1998, 2000).
For example, vector contribution of action of the extrinsic
flexors (FDP and FDS) to fingertip force in a flexed posture is
actually not in the direction normal to the surface but rather
tilted proximally, whereas the intrinsic muscles have lines of
action better aligned with the surface normal (Cole 2006;
Valero-Cuevas 2005, 2009; Valero-Cuevas et al. 2000). The
fact that the flexors do not have the highest loadings in Fig. 2,
C and F, is therefore biomechanically reasonable. These com-
plex biomechanical interactions, however, are difficult to in-
terpret via the loadings in the principal components or indi-
vidual entries of the covariance matrices. Figure 5 further
reinforces this idea using a representative trial. The data in Fig.
5 correspond to the same trial as in Fig. 1, but instead of
showing the 7D normalized muscle tension space as spanned
by each muscle, it shows the projection of the 7 normalized
muscle tensions onto the task-relevant (top 3 traces) and
task-irrelevant (bottom 4 traces) subspaces. These subspaces
can only be calculated using the full covariance matrix. There-
fore these are not the traces of variability in individual muscles
but of variability within two disjoint subspaces that are defined
by specially oriented coordinate systems in the 7D normalized
muscle tension space. The variability in these subspaces either
will (top 3 traces) or will not (bottom 4 traces) affect the
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fingertip force output. Even though specific off-diagonal ele-
ments in the full covariance represent the coactivation of
specific muscle pairs, the true nature of the variability that is
embedded in a 7D space cannot be captured unless analyzing
all elements of the full covariance matrix simultaneously. The
same applies when considering only restricted muscle groups,
i.e., specific rows of the full covariance matrix. Moreover, even
in Fig. 5, it is difficult to assess differences in variability across
the two subspaces by comparing across traces. The full calcu-
lation of variance per dimension (see METHODS) is necessary to
detect the effect by calculating the ratio of task-relevant:task-
irrelevant variance, which in this particular trial is strong at
0.48 (i.e., much lower than 1).

Lack of evidence for dimensionality-reducing muscle
“synergies” in within-trial variability

We find that our results speak to motor control issues beyond
our hypothesis—particularly to the issue of motor synergies.
The idea that related motor behaviors may be constructed by
recombining a small set of synergies has been around for a long
time (Bernstein 1967). Recently it has been instantiated on the
muscle level by using linear decomposition methods like PCA
on the normalized muscle tension signals to identify dimen-
sionality-reducing synergies for the control of redundant mus-
culature (e.g., d’Avella et al. 2006; Krishnamoorthy et al.
2003; Li et al. 1998; Soechting and Lacquaniti 1989; Torres-
Oviedo and Ting 2007; Tresch et al. 2006). For example, it was
shown that four or five different muscle synergies can explain
most of the EMG variance in 3D reaching movements to/from
a variety of targets in 3D (d’Avella et al. 2006).

The existing literature on synergies and dimensionality re-
duction has focused on explaining between-trial variability. In
contrast, the focus of our study is within-trial variability. If we
assume that all muscle activity (including within-trial variabil-
ity) is generated by recombining a small set of synergies, then
the variability structure we observed during the production and
regulation of this task is inconsistent with the notion of syn-
ergies, for the following reasons. If we were to count the
number of hypothetical muscle synergies by drawing a cut-off-
line somewhere in Fig. 2, B and E, the only logical place is
after the first principal component. This would leave �40% of
the variance unaccounted for, and would imply that either there
is only one synergy, making it impossible for the CNS to
utilize the compositionality property of multiple synergies.
Furthermore, given that all coefficients of the first principal
component have the same sign (which to our knowledge has
never been observed in previous studies), this first principal
component may simply reflect overall modulation of fingertip
force as well as stiffness. Or it could imply there was no
dimensionality reduction because each of the seven principal
components explains a nontrivial amount of variance.

This finding can be reconciled with the existing literature by
noting that there may be differences between open- and closed-
loop control as well as between planning and execution.
Previous studies, focusing on between-trial variability that is
mostly driven by changes in task parameters, have emphasized
planning and open-loop control. Even though these movements
were executed under closed-loop control, averaging over mul-
tiple trials in the same condition is likely to eliminate within-
trial variability. In contrast, our analysis emphasizes variability
within a trial, where the task conditions are kept constant and
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FIG. 5. Projection of the normalized muscle tension variance onto the task-relevant (top 3 red traces) vs. task-irrelevant (bottom 4 traces) subspaces. The data
are for the same trial as shown in Fig. 1. Note that this figure highlights the fact that the multidimensional interactions across muscles is a complex phenomenon
that is not readily detectable by studying individual muscle signals or, more importantly, when one records only from a subset of muscles as was done in prior
studies. An important motivation for this study is that, to our knowledge, this is the first time this analysis is performed on electromyographic signals collected
simultaneously from all muscles of a musculoskeletal system, in this case a finger.

67STRUCTURE IN VARIABILITY OF MUSCLE ACTIVATIONS

J Neurophysiol • VOL 102 • JULY 2009 • www.jn.org

 on June 30, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


the only fluctuations are internally generated—presumably
reflecting noise as well as closed-loop corrections. So it may be
that planning and open-loop control rely on synergies while
execution and closed-loop control do not. Of course it is also
possible that our task is too simple, and the closed-loop
controller is not as rich as it may be in other tasks where
synergies might be revealed. However, to the extent that
synergies are low-level mechanisms that are mostly task-
independent, we should see evidence for them in every task.

Both the open- and closed-loop point of view of synergies
are in principle valid, and a more thorough comparison be-
tween the two is likely to be illuminating. Because prior studies
have almost exclusively emphasized the former approach, here
we present some arguments in favor of the latter with the hope
of stimulating a more balanced treatment in future work. In
analyses of between-trial variability, it is difficult to dissociate
the unavoidable consequences of task variation and musculo-
skeletal structure from the intrinsic properties of the neural
controller. For example, consider the EMG patterns during a
center-out reaching task. Suppose for a moment that there is no
inherent variability in the sensorimotor system and all variabil-
ity is imposed by the task—meaning that reaches in different
directions require different EMG patterns. Suppose also that
the control strategy is such that small changes in target location
correspond to small changes in EMG and the mapping between
the two is smooth. Then the observed EMG patterns will lie on
a 1D manifold embedded in the high-dimensional EMG space
simply because the reach targets lie on a 1D manifold (i.e., a
circle). An ideal and necessarily nonlinear dimensionality re-
duction algorithm will be able to explain all EMG data in this
hypothetical experiment with a single muscle synergy. Linear
dimensionality reduction algorithms such as PCA are not ideal,
so we should expect them to find a subspace with more than
one dimension—but still it should be a very low-dimensional
subspace. The same reasoning applies to tasks like locomotion,
where the behavior is very complex but nevertheless remains
close to a 1D limit cycle embedded in some high-dimensional
space. The findings from such studies are useful in the sense
that they tell us what the low-dimensional space is, but the fact
that the space is low-dimensional is hardly surprising given the
low-dimensionality inherent in the task. This confound is
largely avoided in analyses of within-trial variability.
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1 Introduction

In the main text of this manuscript, we esti-
mated the linear mapping from recorded electromyo-
grams (EMGs) to fingertip force outputs using a least
squares algorithm (i.e., linear regression). Through-
out this supplement and the main text we denote this
mapping by A, a 3×7 matrix that transforms muscle
EMGs into fingertip forces. Subsequent analysis of
variance in muscle EMGs was carried out using this
matrix A. Specifically, the row-space and null-space
of A were used to parse the variability in EMGs into
task-relevant and task-irrelevant portions. However,
estimating A using a least squares process could be
biased. In particular if the EMGs for some muscles
are more noisy than others, the corresponding entries
in A could be smaller than the actual moment arms,
which in turn could affect our conclusions regarding
variability structure. Yet another reason for bias in
using a least squares estimate of A arises from the
fact that a least-squares procedure specifically tries
to find A that minimizes errors in estimated fingertip
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forces, i.e., noise in EMGs may be selectively dumped
into the null-space of A. However, it is possible to
work around these forms of bias in estimation by not
only estimating the best-fit A, but finding a probabil-
ity distribution for A. Here, we use Bayesian analysis
to estimate the probability distribution for A using
a numerical sampling scheme calling the Metropolis
algorithm. This is in contrast to the point-estimate
we found in the main text. We find that our con-
clusions about the structure of variability in muscle
activations remain the same as when using a point-
estimate of A. Therefore, we conclude that the least-
squares estimation procedure presented in the main
text did not bias the results of this study. We rel-
egated the Bayesian analysis to this supplementary
note for ease of reading the main text given greater
familiarity with linear regression than with Bayesian
techniques for several readers.

2 Methods

We pool together all trials for a given subject, drop
the trial index, and also subtract the mean so that
the offset b introduced earlier (in the main text) is

1



no longer needed. The procedure described below is
repeated separately for every subject.

2.1 Bayesian Estimation

Instead of taking the data at face value, we consider
the force (f(t)) and measured EMG (e(t)) as noisy
versions of some underlying signals which correspond
to the true fingertip force (f̄(t))and true muscle ac-
tivation (ē(t)):

f(t) = f̄(t) + γ(t) (1a)
e(t) = ē(t) + ω(t) (1b)

where the noise terms γ(t) and ω(t) are indepen-
dent, zero-mean, multivariate, Gaussian white noise
variables with diagonal covariance matrices Q and R.
These two matrices along with the matrix A consti-
tute the model parameters which we will estimate
from the data. Note that A now relates the underly-
ing signals (f̄ , ē) and not the measured signals (f ,
e):

f̄(t) = Aē(t) (2)

We do not know the underlying signals, but for-
tunately it is not necessary to know them. Indeed,
multiplying the two noise models (Equation 1) by A
and subtracting yields:

Ae(t) − f(t) = Aω(t) − γ(t) (3)

The expression on the left (i.e., the residual) can be
computed from the data for an assumed (guessed) A.
The expression on the right however, is a Gaussian
white random variable with zero mean and covariance
matrix ARAT + Q. Thus using the formula for the
probability density function of a multivariate normal
distribution, the likelihood of the measured residual
at time t for given (or guessed) model parameters A,
R, Q is

pt(θ) =
e(−

1
2 (Ae(t)−f(t))T(ARAT+Q)−1(Ae(t)−f(t)))

(2π)
3
2
√|ARAT + Q|

(4)
where θ, the parameters to be estimated using the
data, are simply the elements of A, Q and R strung
out as a long vector. Because, A has 21 elements

(3 × 7), Q has 3 elements (a 3 × 3 diagonal matrix),
and R has 7 elements (a 7 × 7 diagonal matrix), the
total number of parameters to be estimated (i.e., size
of θ) is 31. Given that our data are in the form
of discrete measurements, the total likelihood of the
measured data time-series is simply the product over
all t of the likelihood given by Equation 4:

p(θ) =
∏

t

pt(θ) (5)

2.1.1 Numerical sampling of the posterior
distribution

In the absence of a prior probability distribution1

for θ (i.e., a uniform prior), the posterior distribu-
tion2 for θ (the product of p(θ) and the uniform
prior) is then proportional to the likelihood (p(θ)).
The key idea in Bayesian analyses is to use the pos-
terior distribution instead of a single parameter es-
timate. When this distribution is too complex to
handle analytically, as is the case here, one can use
Markov Chain Monte Carlo (MCMC) sampling. The
specific algorithm we use is the Metropolis algorithm,
which uses the following iterative scheme to gener-
ate sample the posterior distribution. Let θk denote
the kth parameter sample. Generate a candidate new
sample θ′ = θk + ε, where ε is drawn from a zero-
mean multivariate Gaussian distribution. Then, we
compute the probability ratio:

a =
p(θ′)
p(θ)

(6)

where p is given by Equation 5 and is proportional
to the target distribution (posterior) from which we
want to sample. If a ≥ 1, make the deterministic
update θk+1 = θ′. Otherwise make the stochastic

1The prior probability distribution or simply, the prior, is
the name given to the uncertainty in the variable we want to
estimate before any data are taken into account.

2The posterior probability distribution or simply, the pos-
terior, is the name given to the conditional probability distri-
bution of the variable we want to estimate after taking into
account the data and a known prior. According to Bayes’ the-
orem, this is simply the product of the prior and the likelihood
of observing the measured data.
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update

θk+1 =

{
θ′ with probability a

θk with probability 1 − a
(7)

After an initial “burn-in” period, the sequence of
samples generated in this way is guaranteed to match
the target distribution. To ensure that the Markov
chain has enough time to converge we allowed a large
number of updates (10 million), and furthermore re-
peated the entire process 3 times with different ini-
tial values (θ0). Visual inspection confirmed that for
7 out of the 8 subjects, the chain always converged
in less than 4 million updates. Thus we discarded
the first half of each chain. To speed up processing
we kept only 1 out of each 100 consecutive samples –
which is motivated by the fact that MCMC generates
samples that are correlated over time. Combining the
results from the 3 chains, we thus analyzed 150,000
samples from the posterior distribution over the pa-
rameters for each subject. For one of the 8 subjects
we did not observe convergence. Furthermore for this
subject the matrix A estimated with linear regres-
sion had substantially larger elements compared to
the other subjects. Thus we decided to exclude this
subject from the present analysis, even though this
subject’s (unreliable) results were actually consistent
with our hypothesis. This left us with a total of 41
trials from 7 subjects.

2.2 Variability ratio

We briefly recall how we quantified the ratio of
task-irrelevant to task-relevant variability in EMGs.
A detailed description is found in the main text.
From the trial EMG data, we calculated three co-
variance matrices: Λ – the full covariance matrix, D
– the diagonal covariance matrix, with diagonal el-
ements identical to Λ and all off-diagonal elements
set to zero, and finally S – the diagonal signal depen-
dent noise covariance matrix such that the diagonal
terms were proportional to the mean muscle activa-
tions squared. For a given A, the three rows of A
span the task-relevant subspace of A and the four
basis vectors of the nullspace of A span the task-
irrelevant subspace of A. For every basis vector û

and covariance matrix V (where V is one of Λ, D,
or S), the projected variance is given by the scalar
quantity, ûTVû. Then, the variability index for each
of the task-relevant and -irrelevant subspaces is just
the average of the variance projected onto each of
their respective basis vectors. The ratio of the vari-
ability index of the task-relevant to that of the task-
irrelevant subspace is the quantity of interest (we call
it the variability ratio). In the main text we found
that for a least squares estimation of A, this ratio was
smallest for Λ and specifically, it was smaller than 1
(both results were statistically significant). Here we
repeat the same analysis using the 150,000 samples
of A generated by the Metropolis algorithm. In ad-
dition to the average value of this ratio, the Bayesian
method yields the posterior distribution of the vari-
ability ratio for a single trial, thus enabling single-
trial hypothesis testing.

3 Results and discussion

We found that samples of the posterior distribu-
tions of A, R and Q, and therefore, the posterior
distribution of the variability ratio, all converged. In
other words, all three chains of the MCMC led to very
similar distributions for the estimated mapping from
EMGs to forces (A) (see Figure 1a) and the variabil-
ity index (see Figure 1c). The estimated noise vari-
ances (R for EMG and Q for force) however, were typ-
ically non-Gaussian and differed to a greater degree
between chains (see Figure 1b). This is not surprising
because variances are typically harder to estimate.
Finally, we found the linear regression estimates to
be surprisingly close to the Bayesian estimates.

Using single-trial hypothesis testing we found that
for 30 out of 41 trials, the variability ratio was statis-
tically significantly smaller than 1 (filled, blue data
points in Figure 2a). Recall that our hypothesis is
that the variability index is below 1. For each trial,
the Bayesian method gives us a sample from the pos-
terior distribution of the variability ratio. Thus, hy-
pothesis testing is performed by simply counting how
many samples agree with the hypothesis and check-
ing that the percentage is above a desired significance
level (say 0.95). Of the 41 trials analyzed, in 30 cases
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Figure 1: Examples of posterior distributions of A, R (EMG variance), and the calculated variability ratio.
(a) Histograms generated using 50,000 samples (number of samples per chain) of one element of A for one
subject and two different chains (different initial values) of the Metropolis algorithm. Note that the two
distributions are almost identical and near-Gaussian. This was typical for all 21 elements of A. For this
element, the linear regression estimate was 11.4, which is close to the mean of the histograms (11.9). (b)
Histograms from two different chains for one of the EMG noise magnitudes (expressed as standard deviation
rather than variance) for one subject, one trial. Here the distributions are no longer Gaussian and tend to
differ more between chains. (c) Histograms of the variability ratio for one trial in one subject for two different
chains of the sampling algorithm. Again we have similar and near-Gaussian shapes. For this trial/subject,
the entire posterior distribution lies below 1, supporting our hypothesis about task-relevant:task-irrelevant
variability.

Figure 2: Variability ratios for Bayesian vs. least squares estimates of A. (a) Histogram of the variability
index from 41 trials for the Bayesian (filled-in, blue circles) and the least squares (open, red circles) estimates.
In case of the Bayesian estimates, the histogram represents the mean of the posterior distribution of the
variability ratio. (b) Scatter plot comparing the variability ratio found using least squares vs. that found
using the Bayesian method.
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the index was significantly smaller than 1, in 9 cases
it was significantly larger than 1, and in the remain-
ing 2 cases the result was not significant (meaning
that the distribution was centered near 1 and the
spread was too large to reach significance in either
direction). Note that compared to standard statisti-
cal tests, Bayesian tests such as this are much more
intuitive as well as accurate. See Mackay (2003) for a
discussion of sampling and Bayesian hypothesis test-
ing.

Figure 2b shows a scatter plot comparing the vari-
ability ratio computed using least squares and the
Bayesian method. Note the almost perfect agree-
ment. The mean was 0.775 for the least squares
method and 0.765 for the Bayesian method. This
rules out the potential confounds of biased least-
squares estimation. To be sure the estimated noise
magnitudes differed, but these differences did not in-
teract with our hypothesis. The average (RMS) noise
magnitude was 3% MVC for EMGs and 0.18 N for
fingertip forces.
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