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We present a numerical exploration of contact transitions with the fingertip. When
picking up objects our fingertips must make contact at specific locations, and—upon
contact—maintain posture while producing well-directed force vectors. However, the
joint torques for moving the fingertip towards a surface (tm) are different from those for
producing static force vectors (tf). We previously described the neural control of such
abrupt transitions in humans, and found that unavoidable errors arise because
sensorimotor time delays and lags prevent an instantaneous switch between different
torques. Here, we use numerical optimization on a finger model to reveal physical bounds
for controlling such rapid contact transitions. Resembling human data, it is necessary to
anticipatorily switch joint torques to tf at about 30 ms before contact to minimize the
initial misdirection of the fingertip force vector. This anticipatory strategy arises in our
deterministic model from neuromuscular lags, and not from optimizing for robustness to
noise/uncertainties. Importantly, the optimal solution also leads to a trade-off between
the speed of force magnitude increase versus the accuracy of initial force direction. This
is an alternative to prevailing theories that propose multiplicative noise in muscles as the
driver of speed–accuracy trade-offs. We instead find that the speed–accuracy trade-off
arises solely from neuromuscular lags. Finally, because our model intentionally uses
idealized assumptions, its agreement with human data suggests that the biological
system is controlled in a way that approaches the physical boundaries of performance.
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1. Introduction

Every day we use our fingertips to make and break contact with objects as we
interact with them. This often requires abruptly transitioning from moving the
fingertip towards a specific location on the object to producing well-directed force
vectors. We recently found (Venkadesan & Valero-Cuevas 2008) that the human
nervous system achieves this via an anticipatory and neurally demanding strategy
of switching muscle activations—and therefore finger joint torques—before
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contact (i.e. from those controlling finger motion to those controlling fingertip
force). We (Venkadesan & Valero-Cuevas 2008) and many others (Hogan 1985;
Whitney 1987) have demonstrated that such a strategy is sensitive to time delays
and lags in the combined controller plus finger system, and to errors in planning.
These observations raise several questions: Does the strategy used by the
biological system for contact transitions approach a strategy that is mechanically
optimal or near optimal; or is it driven by biological considerations/limitations
that are not typically included in biomechanical models? In addition, given that
the rapidity of the task precludes the benefit of sensory feedback, how
sophisticated and accurate does the motor programme need to be? What are
the limits to the mechanical performance of the task given the inherent dynamics
of muscle function? As a first step towards answering these questions, we tested
whether an open-loop optimal controller for an ideal mathematical model of the
finger (i.e. a planar, frictionless, torque-driven mechanical system with free hinge
joints) would transition between joint torques in a manner that resembles
electromyographic (EMG) measurements in humans.
2. Experimental findings on human finger contact transitions

In a prior study (Venkadesan & Valero-Cuevas 2008), we investigated the neural
control of finger musculature when the index fingertip abruptly transitions from
motion to static force production. Human subjects produced a downward tapping
motion followed by vertical fingertip force against a rigid surface. By
simultaneously recording the three-dimensional fingertip force and EMG from
all seven index finger muscles, we found that the muscle coordination pattern
clearly switched from that for motion to that for isometric force at approximately
65 ms before contact (figure 1).We then usedmathematicalmodelling and analysis
to find that the underlying neural control was predictive and switched between
mutually incompatible strategies in a time-critical manner. Importantly, this
abrupt switch in underlying neural control polluted fingertip force vector direction
beyond what is explained by muscle activation–contraction dynamics and
neuromuscular noise. Therefore, we proposed that, because the neuromuscular
system cannot switch between control strategies instantaneously or exactly, there
arise physical limits to the accuracy of force production upon contact.

However, the prior modelling work does not establish the bounds on
performance of this transition, nor does it provide any insights into the necessity
for an anticipatory strategy.
3. Methods

(a ) Problem statement

We seek to find an optimal open-loop control strategy for transitioning from
finger motion to static fingertip force production. In the three-dimensional space
of joint torques (where each axis represents the torque about one joint), this
problem can be described graphically as the need to smoothly transform one
vector for fingertip motion into another vector for fingertip force within a finite
time (figure 2). The task goal at the specified contact time is to arrive at the
Phil. Trans. R. Soc. A (2009)
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Figure 1. The main experimental findings of our prior work. Adapted from Venkadesan &
Valero-Cuevas (2008). (a) The seven EMG signals were assembled into a seven-dimensional EMG
vector weighted by the relative strength of the muscles. To track the temporal change in direction
and magnitude of the muscle coordination vector, we used (i) the scalar angle between the
instantaneous EMG and a reference EMG vector (from static force production 500 ms after
contact) and (ii) its Euclidean norm. The data show that the change in vector direction is almost
complete by approximately 65 ms before contact (tZ0). (b) The magnitude of the EMG vector,
however, begins to increase at approximately 70 ms before contact occurs and continues to increase
after contact. The EMG vector reflects the vector of joint torques because the EMG vector is
related to net joint torques through an affine map as described previously (Valero-Cuevas et al.
1998; Valero-Cuevas 2006).

1165Effects of lags on contact transitions
surface (i) as close to the coordinates of the target location as possible, (ii) with
minimal horizontal and angular velocities of the fingertip, (iii) with joint torques
that produce a prescribed static force vector (magnitude and direction) upon
contact (i.e. tZtf), and (iv) with the time derivative of the joint torque vector
aligned with tf ð _̂tZ t̂fÞ, i.e. the fingertip force vector should only be growing in
magnitude and not changing in direction. Therefore, the specific path of the
torque vector, its temporal evolution and the time at which the transition is
Phil. Trans. R. Soc. A (2009)
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Figure 2. Multiple paths for transitioning from the control of fingertip motion to fingertip force.
There are multiple possible paths in three-dimensional space of joint torques to transition from the
torques for motion (start) to the production of well-directed forces upon contact (end). Because the
neurophysiological system can transition neither instantaneously nor exactly, it must be done by
interpolating in one of several ways in an open-loop manner (because the transition is faster than
the delays in sensory feedback). Some possible strategies are: (1) first rotating the vector and then
growing its magnitude (as in humans; figure 1) or (2) simultaneously changing both vector
direction and magnitude. In this work, we find the optimal strategy so that the fingertip force
vector is closest to vertical upon contact.
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completed are all free to change. We used numerical optimization to find the
optimal control strategy that best achieves this task goal. Details of the
numerical optimization are given in §3e.

Notation. Throughout the text, we use bold-italicized symbols (e.g. f, t, N) for
vectors, roman capitals for matrices (e.g. M, C), and italicized symbols for
scalars (e.g. t, b, Tact). For denoting specific components of vectors, we use
subscript indices; and when there is no room for subscripts, we use superscripted
indices within parentheses ðe:g: t1; t

ðiÞ
D Þ. Hatted symbols denote the unit vector

corresponding to the vector denoted by the hat-less version of the same symbol
(e.g. t̂ is the unit vector of t).

(b ) Modelling assumptions

We list below the main assumptions in building the finger model and briefly
state the rationale underlying each assumption.

Ideal finger joints. The finger is modelled as a planar three-joint mechanism
with ideal, frictionless hinge joints with no stiffness or damping. We make this
assumption primarily because we want to find the neural contributions to the
experimentally observed joint torque trajectories separate from passive
musculoskeletal viscoelastic elements, such as ligaments, skin, etc.

Torque-actuated joints. Our model has joints actuated by torque generators
instead of muscles. This permits us to simplify the model while at the same time
to identify the physical bounds on performance of the biological system.

Open-loop switching strategy. We consider only open-loop control strategies in
a transition time window between K60 and 0 ms. This is because we assume that
physiological time delays preclude the use of sensory information in guiding the
Phil. Trans. R. Soc. A (2009)



1167Effects of lags on contact transitions
control switching during this window. Typical values for sensory time delays in
finger manipulation tasks range from 65 to 120 ms (Venkadesan et al. 2007 and
references therein).

Torque actuator’s activation and contraction dynamics. We prescribe that
activation–contraction dynamics prevent the muscle forces, and in turn the joint
torques, from switching instantaneously between those for finger motion and those
for static fingertip force. In the absence of this assumption, there is a trivial and
physiologically unrealistic solution to our optimal control problem. Namely, the
joint torques could switch instantaneously at the exact time of contact and produce
a perfectly vertical initial fingertip force vector. However, a key and unavoidable
limitation in the biological system is the presence of neuromuscular lags that limit
the rate of change of muscle forces (Zajac 1989), and hence of joint torques.

Collision law. We assume that the fingertip is well damped so that high impact
forces, rebound, etc. are of no concern. Additionally, we assume that damping
from the fingertip and finger joints can completely dissipate the vertical and
(small) horizontal velocity components of the fingertip, but not the rotational
velocity. This is justifiable by the known finger pulp properties in humans
(Hajian & Howe 1997; Pawluk & Howe 1999a,b; Jindrich et al. 2003) and our own
kinematic measurements (Venkadesan & Valero-Cuevas 2008).

Post-contact force production. We only consider the instant of time
immediately after contact to calculate the fingertip force vector (mis)direction
that needs to be within the friction cone. Subsequently, of course, passive
viscoelastic elements in the joints (that we have omitted in our model) and the
nervous system will stabilize the force direction and finger posture. Those
subsequent adjustments are beyond the scope of this work.

Time window of interest. We restrict the time interval of all simulations
to [K60 ms, 0 ms], where the contact occurs at 0 ms. This assumption reflects our
experimental observation that humans performed an anticipatory transition in
EMGs. This assumption therefore restricts the class of optimal solutions that we
search to anticipatory strategies. However, it does not specify how much sooner
than contact the actual transition itself should occur. Our results (§4a) reveal
some surprising findings in this regard.

(c ) Dynamic model of the index finger

We use a three degree-of-freedom planar and hinged serial mechanism driven by
torques at each joint for modelling the index finger (figure 3). The numbering
system we use for all variables associated with each joint is as follows: 1 for the
metacarpophalangeal (MCP) joint; 2 for the proximal interphalangeal (PIP) joint;
and 3 for the distal interphalangeal (DIP) joint (figure 3). The index finger model
consists of three parts—finger motion, collision law and fingertip force production.

(i) Three-link open-chain model of finger motion

The equations of motion of a planar torque-driven three-link open-chain model
were derived using a Lagrangian formulation. This is a very standard derivation
and can be found in many textbooks (e.g. Spong & Vidyasagar 1989). The final
equations of motion are

Mð4ðtÞÞ€4ðtÞCCð4ðtÞ; _4ðtÞÞ _4ðtÞCNð4ðtÞÞZ tðtÞ: ð3:1Þ
Phil. Trans. R. Soc. A (2009)
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Figure 3. Schematic of a three-link open-chain and a four-link closed-chain model of the index finger.
(a) Three-link model for the motion phase, which shows the posture 300 ms before contact. Joint
angles 4i are positive anticlockwise as measured from the positive x -axis. Joint torques (ti) also
follow the same convention. L and H are the horizontal and vertical distances to the target point
from the origin of the coordinate system located at the MCP joint. (b) Four-link model of force
production when the fingertip is in contact with the surface (tZ0 ms). The figure shows a specific
posture, namely the desired (goal) posture for force production. This posture was identical to the
instruction given during our experiments. Here f is the contact force at the fingertip. Because
the fingertip cannot resist any torques at the tip, we treat the contact as a frictionless joint.
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Henceforth, all time dependences will be suppressed for the sake of readability.
M(4) is the symmetric (and positive definite) 3!3 inertia matrix such that the
total kinetic energy of the system can be calculated as ð1=2Þ _4TMð4Þ _4. Then, the
3!3 matrix Cð4; _4Þ that contains centrifugal and Coriolis contributions to joint
torques is calculated using the formula

Cijð4; _4ÞZ
1

2

X3
kZ1

vMij

v4k

C
vMki

v4j

K
vMjk

v4i

� �
_4k: ð3:2Þ

Finally, N(4) is simply the 3!1 vector of joint torques induced by gravity.
Numerical values for model parameters. We assumed all phalanges to be of

uniform circular cross section with a diameter of 13 mm. Because fingers have
low fat content, we assumed them to be denser than average human body
density, which is approximately 1100 kg mK3 (Behnke et al. 1942), and used
a value of 1250 kg mK3. Using these, we calculated the masses and planar
moments of inertia assuming each phalanx to be a cylindrical prism with its
axis in the simulation plane. The lengths we used for each of the phalanges are
l1Z0.0508 m, l2Z0.0254 m and l3Z0.01905 m. All results we report were robust
to biologically reasonable variations of these numbers. However, we do not
present the results of that sensitivity analysis.
(ii) Collision law for the fingertip

The vector r comprises endpoint position (rx, ry) and its orientation, i.e. the
angle relative to the vertical (ra). Then, the fingertip linear and angular velocities
ð _rÞ are related to joint angular velocities ð _4Þ through the 3!3 posture-dependent
Phil. Trans. R. Soc. A (2009)



1169Effects of lags on contact transitions
manipulator Jacobian (A(4)). If the manipulator Jacobian is full rank, as in this
case, the collision law specified in terms of the fingertip velocity can be rewritten
in terms of joint angular velocities:

_rx

_ry

_ra

0
B@

1
CAZAð4Þ

_41

_42

_43

0
B@

1
CA; ð3:3Þ

g :

_rx

_ry

_ra

0
B@

1
CA1

0

0

_ra

0
B@

1
CA: ð3:4Þ

(iii) Four-link closed-chain model of fingertip force production

The equations of motion for the non-slipping finger where the fingertip is in
contact with the surface differ from that for free motion because of joint torques
induced by the fingertip contact force. This force was calculated using Lagrange
multipliers and the constraint equations for the fingertip. The resulting equations
of motion are

Mð4Þ€4CCð4; _4Þ _4CNð4ÞCAð4ÞTf Z t ð3:5Þ
and

f Z ðAMK1ATÞK1ðAMK1ðtKC _4KNÞC _A _4Þ: ð3:6Þ
Note that, to calculate the fingertip force at the instant of contact, given the
finger’s state just prior to contact, we only need to transform the pre-contact
finger state according to the collision law (equation (3.4)) and then evaluate the
algebraic equation for the contact force (equation (3.6)).

(d ) Joint torque model with ‘activation–contraction’ dynamics

We do not explicitly include muscles or other skeletal structures, such as
tendons, ligaments, skin, etc., in our model. As discussed earlier (§3b), we want
to avoid trivial solutions without imposing arbitrary constraints on the evolution
of joint torques prior to contact. We therefore use a model for the torque
actuators that has temporal dynamics similar to those for muscles.

Muscles are often modelled to act as second-order low-pass filters of the neural
command (Zajac 1989) with chemical activation dynamics and mechanical force-
generation (also called contraction) dynamics. Activation dynamics refers to the
dynamics of calcium uptake/release in the muscle fibre once the neural spike
train excites the tissue. Contraction dynamics refers to the dynamics of force
generation in the muscle that depends on sarcomere mechanics and muscle plus
tendon compliance. We developed a torque generation model with two time
scales as proxies for muscle activation–contraction dynamics. The two time
scales are one for ‘activation’ dynamics (Tact in equation (3.7a)) and another for
‘contraction’ dynamics (Tcon in equation (3.7b)). We also include the well-known
asymmetry in activation versus deactivation time scales (Brown & Loeb 2000)
caused by the faster uptake of calcium compared to the release of calcium
(parametrized by b in equations (3.7a)–(3.8)).
Phil. Trans. R. Soc. A (2009)
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For each joint iZ1, 2, 3, the differential equations for torque production are
governed by a hidden internal variable that we will refer to as ‘activation’ and
denote by the symbol aðiÞðtÞ:

Tact _a
ðiÞC bCð1KbÞ tðiÞD

��� ���� �
aðiÞ Z t

ðiÞ
D ; ð3:7aÞ

Tcon _t
ðiÞCtðiÞ Z aðiÞ: ð3:7bÞ

Time dependence has been omitted for clarity. Combining the above two
equations, we obtain a second-order nonlinear ordinary differential equation
model for torque production. The nonlinearity arises because of the dependence
(governed by b) of the activation–deactivation time constant on the driving input
command (tD):

TactTcon€t
ðiÞC TactCTcon bCð1KbÞ tðiÞD

��� ���� �� �
_tðiÞ C bCð1KbÞ tðiÞD

��� ���� �
tðiÞ Z t

ðiÞ
D ;

ð3:8Þ
where tD is the torque command signal that we want to find as part of the optimal
control problem.

Numerical values for model parameters. We used values for Tact, Tcon and b
based on calculations similar to those given in Zajac (1989). To allow for the
fastest possible, but biologically plausible, torque actuators, we chose TactZ
12 ms based on existing experimental data on fast muscle fibres (Wells 1965;
Close 1972; Zajac 1989). Note that this value is slightly faster than typical values
reported for human muscles (e.g. Winters & Stark 1985). For calculating Tcon,
note that the biggest muscles actuating the finger are located in the forearm and
therefore possess long tendons (Lieber 1993). Using a calculation similar to Zajac
(1989) we chose TconZ3TactZ36 ms. We chose bZ0.2 based on the existing
experimental data (Winters & Stark 1988). This is similar to values used by
others for muscle models (e.g. Raasch et al. 1997).
(e ) Numerical optimization

For the numerical optimal control problem, we focus only on the time interval
from K60 to 0 ms, where 0 ms is the contact time. We fully specify the initial
condition of the finger 4m; _4m; tm; _tmð Þ at K60 ms and find tD to minimize a cost
function that depends on the finger’s state at contact (r(0), _rxð0Þ, _rað0Þ, t(0) and
_tð0Þ). For numerical efficiency without compromising the time resolution of the
joint torque dynamics, we time-discretize the torque command (tD), using a
piecewise linear approximation defined on a mesh of four points in the time
interval [K60 ms, 0 ms]. Thus, the command varies linearly in pieces of 20 ms
duration. A duration of 20 ms is faster than the rate-limiting time scale of joint
torque dynamics, namely TconZ36 ms. Moreover, this choice of time discretiza-
tion is biologically reasonable based on the known peak discharge rates of
spinal motor neurons. Neurophysiological studies report ranges for measured
peak discharge rates between 35 and 45 Hz (Fuglevand et al. 1993). Modelling
studies typically use values in the range of 25–50 Hz (Brown & Loeb 2000; Jones
et al. 2002; Keenan & Valero-Cuevas 2007). We now outline the numerical
optimization procedure.
Phil. Trans. R. Soc. A (2009)
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(i) Calculating initial conditions

Resembling our experimental data (Venkadesan & Valero-Cuevas 2008), at
tZK500 ms we specify the fingertip to be at rest, located vertically level with the
MCP joint, vertically above the target, and with a vertically oriented distal
phalanx. During the interval [K500 ms, K60 ms], we prescribe the fingertip to
move downwards, with the distal phalanx remaining vertical, and the fingertip
acceleration being a b-function such that the fingertip exactly reaches the surface
height at tZ0 ms. For this calculation, we also assume that the fingertip horizontal
velocity and distal phalanx angular velocity are both zero. The corresponding
fingertip velocity profile is a smooth, symmetric sigmoid. These conditions
resemble our experimental data and uniquely specify the time series of the finger’s
state (4, _4, t, _t) until tZK60 ms. Thus, the conditions at tZK60 ms are specified.

(ii) Cost function

The cost function was calculated using the finger’s state at tZ0 ms, at the end
of a dynamic simulation of finger motion during the interval [K60 ms, 0 ms]
driven by the piecewise linear control command tD(t):

J Z
rxKL

10

� �2

C
ryKH

3

� �2

C
raK0

p=10

� �2

C
_rxK0

100

� �2

C
_raK0

p=2

� �2

C

����� tð0ÞK k1t̂f
k1

�����
2

C
arccosð _̂t$t̂fÞK0

p=18

 !2

; ð3:9Þ

where L is the horizontal location of the target relative to the MCP joint
(figure 3); H is the corresponding vertical location; k1 is the desired magnitude of
the immediate post-contact joint torque vector; and t̂f is the unit vector for joint
torques that would produce a vertically oriented fingertip force in the desired
contact posture (figure 3). Note that the sixth term is a sum over the three
components of the joint torque vector at contact.

We divide the error in each component by a scaling factor to non-dimensionally
define the term ‘small error’. The scaling factors for each term in equation (3.9) were
chosen so that the cost function is negligibly small if and only if at tZ0 ms: Drx/
10 mm; Dry/3 mm; Dra/p/10 rad; D _rx/100 mm sK1; D _ra/p=2 rad sK1;
DtðiÞ/k1 N m for iZ1, 2, 3; and arccosð _̂t$t̂fÞ/p=18 rad. Note that larger
errors in this cost function also mean larger deviation of the fingertip force vector
direction from vertical, because t̂f was calculated to produce vertical force at the
specific target posture and zero joint angular velocities. Therefore, equation (3.9)
serves as a surrogate for the actual cost we are interested in.

(iii) Initial guess

For generating the initial guess, we first extend the finger joint-angle trajectories
obtained in §3e(i) to the interval [K500 ms, 0 ms]. We then solve for t(t)
by substituting for 4(t), _4ðtÞ and €4ðtÞ in equation (3.1) and find _tðtÞ by
differentiating t(t). By substituting t(t) and _tðtÞ in equation (3.8) we form tD(t).
Thus, we form the initial guess of tD at four uniformly spaced mesh points of the
interval [K60 ms, 0 ms].
Phil. Trans. R. Soc. A (2009)
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(iv) Optimization loop

We first make an initial guess for tD as outlined in §3e(iii) and use the
function fminsearch within the MATLAB simulation environment to find the
optimal control solution. This optimization routine uses the Nelder–Mead
simplex method. Despite unprovable convergence (Lagarias et al. 1998) in
problems with more than two dimensions (our problem is 4!3Z12
dimensional), we chose this algorithm because it does not use gradient
information and is hence robust. Moreover, we performed additional steps to
verify convergence as outlined below. Other smooth, gradient-based methods
failed to converge for our problem, and stochastic methods such as simulated
annealing were too slow to converge.

In each iteration of fminsearch, we solve the differential equations (3.1) and
(3.8) in the interval [K60 ms, 0 ms] using initial conditions specified in §3e(i). We
use the values of 4(0), _4ð0Þ, t(0) and _tð0Þ at the termination of the dynamic
simulation of finger motion and equation (3.9) to calculate the cost function.

(v) Convergence criteria

We consider a solution to have converged if and only if all of the following
criteria are satisfied. First, we require the solution to remain unchanged (to a
tolerance of 10K10) for at least 5000 iterations of the optimization loop. Once
that condition is satisfied, we then randomly perturb the solution using a random
value drawn from a uniform distribution with a range of G1 per cent of the
solution value. Finally, using this perturbed solution as an initial guess, we verify
whether the optimization converges back to the unperturbed solution (using the
same tolerance of 10K10) before calling it a locally optimal solution. We repeated
the random perturbation three times for each solution, all of which converged
back to the same solution.
4. Results and discussion

We solved a sequence of optimization problems with increasing values of k1
(magnitude of the joint torque vector upon contact) from 0.015 to 0.1 N m. This
corresponded to larger force magnitudes at contact, i.e. with increasing
requirements on initial fingertip force magnitude from low (0.385 N) to high
(1.889 N). All of these simulations converged successfully as per our criteria.
Specifically, in all cases, the converged solution had a ‘perfect’ residual cost that
was less than or equal to 10K6 (equation (3.9)). Individual terms in the cost
function were each less than 10K6. This means that the error with respect to
desired accuracy for every term in the cost function was less than 0.1 per cent.
The corresponding angular deviation of the fingertip force vector from the
vertical was always less than 10K3 rad. Our results were also robust to variability
in the initial guess, although convergence to the final solution was faster if we
used numerical continuation for finding the optimal solution for increasing values
of k1. As an example of numerical continuation, say we have a converged solution
for k1Z0.015 N m and want to solve for k1Z0.02 N m. Then, we would first solve
for k1Z0.016 N m using the converged solution for k1Z0.015 N m as the
initial guess. We repeat this slow increase in k1 until we reach k1Z0.02 N m.
Phil. Trans. R. Soc. A (2009)
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Figure 4. Optimal joint torque transitions for a low demand on post-contact joint torque
magnitude (0.015 N m). For this low level of initial force production (0.385 N), the optimal
controller found a solution that produces perfectly vertically aligned fingertip force upon contact.
We show 100 uniformly spaced data markers over 60 ms. (a) The magnitude and direction of the
joint torque vector. The angle between the joint torque vector before contact and the torque
needed for maximal force production anticipatorily switched at approximately 30 ms before
contact. The magnitude of the joint torque vector, however, increases only after reorientation of
the joint torque vector. This closely resembles our experimental data. (b) A three-dimensional plot
of the joint torque trajectory reveals why the torque vector direction changes before the
magnitude. The joint torque vector for producing motion first shrinks in magnitude to close to the
origin, then it reorients towards the torque vector needed for force production, and finally it
increases in magnitude. Note that the three-dimensional plot looks planar (t1–t2 plane) because
t3(t)Z0 for all of our optimal solutions.
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This process is referred to as numerical continuation and is effective when there
is a smooth (at least continuous) dependence of the output on a varying
parameter, which in our problem is the dependence of optimal tD on k1.
(a ) Agreement with experimental data

(i) Control switching: joint torque direction before magnitude

As in the experimental data, figure 4 clearly shows that (i) changes in the joint
torque vector direction are completed at approximately 30 ms before contact and
(ii) growth in vector magnitude begins in earnest only after the change in vector
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direction is completed. This is in contrast to the other possible alternatives where
torque vector magnitude and direction change simultaneously, or changes in
direction lag changes in magnitude.

We present physical arguments for why the optimal solution shows this
sequencing of change in vector direction followed by vector magnitude increase.
The finger is very light and requires low torques for producing the desired motion.
Therefore, if the magnitude of the torque vector increased rapidly while the finger
is far from contact and joint torques are still transitioning, these high torques may
overaccelerate the fingertip away from the target or cause the finger to land in an
undesirable posture. In a real biological finger it would also make it necessary to
dissipate more energy at impact, or have other possible undesirable consequences
(e.g. slipping, bouncing, etc.). Thus, it is best to maintain low torque magnitudes
for as long as possible.

(ii) Anticipatory nature of control switching

With respect to timing, our simulations are meant to shed light on our
experimental results and therefore explore only the space of anticipatory joint
torque strategies. However, the specific timing of direction change in the optimal
solution was surprising. Given how rapidly the vector direction changed (less
than 10 ms), the controller could have waited to execute the switch until just
before contact (say, until tZK10 ms). Instead, the switch was executed well
before contact (approx. 30 ms), in agreement with the experimental data.
Although it is tempting to attribute the early switch in the biological system to
uncertainties and noise, that is not applicable to our results. Our optimal
controller had exact knowledge of the contact time and there was no stochastic
element in our simulations.

We provide some physical arguments for this result. In §4a(i), we presented
physical arguments for the sequencing of direction change followed by magnitude
increase in the joint torque vector. However, for small values of tD, i.e. when the
joint torque vector is close to the origin, the actual time scale of the contraction
dynamics is slower than TconZ36 ms because of the nonlinearity introduced by b
(equation (3.8)). Therefore, the time taken to increase joint torques might be so
severely rate limited that the magnitude increase has to start well in advance,
and, in turn, the direction change has to be earlier still. In other words, given
that a specific force magnitude is required at contact, the controller does indeed
wait until the last minute to perform the transition, but the rate-limiting process
is the magnitude increase and not the direction change. Note that we used
smaller than typical values for Tact and Tcon in our model (§3d ) to truly estimate
the upper bounds on the physical limits of performance. In the biological system,
these time scales are likely to be slower and a real finger has additional joint
viscoelastic elements that are absent in the model, which might explain the
approximate 35 ms discrepancy in exact timing of the switch between our model
and the experimental results.

(b ) Speed–accuracy trade-off

As the demands of the task increase, which in our problem is the magnitude of
the immediate post-contact fingertip forces (represented by k1), we see that the
control switching happens earlier. More interestingly, when we compare increasing
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values of k1 from 0.015 to 0.1 N m, we see a qualitative difference emerge in the
optimal control strategy (figure 5). Namely, the joint torque vector reorients itself
twice for higher values of k1, as opposed to only once for lower values of k1.

Upon further inspection of the more demanding tasks, we find that the
solutions with corrective torques also exhibit unrealistically hyperextended
DIP joint angles in their motion (e.g. finger snapshot shown in figure 5d at
approx. K18 ms for k1Z0.1 N m). This anatomically unrealistic action is what
helps the optimal controller to achieve a perfect solution (residual is approx. 0)
for even the demanding tasks. This is an artefact of insufficient constraints in our
model because we do not impose restrictions on the range of motion of the joints.

Our proposition is that if we were to solve the (harder to converge)
constrained optimization problem by adding joint constraints, the optimal
controller would no longer be able to execute perfect transitions. In other words,
we expect that, with the addition of joint constraints, the error in fingertip force
vector direction would be greater for increasing demands on initial force
magnitude. This proposition is supported by figure 5, where we plot the peak
hyperextension of the DIP joint (i.e. the peak value of unrealistic postures) as a
function of k1. It is apparent that there is a nearly linear and monotonic increase
in the unrealistic hyperextension of the DIP joint with increasing values of k1.
Given that this was the unique optimal solution with a large basin of attraction
(because perturbations of this solution converged back to it), constraining the
controller to avoid joint hyperextension would only increase the residual cost
function, i.e. there would be greater errors in fingertip force vector direction for
higher demands on the speed of rise of force magnitude. This is because, in the
neighbourhood of the minimum, the cost function resembles a quadratic surface.
Therefore, by excluding increasingly larger neighbourhoods of the optimal
solution (for increasing constraint violations), we expect the cost function to
increase monotonically (in the absence of nearby minima).

Our speed–accuracy result remains inconclusive until we solve the constrained
optimization problem. But we are confident that future refinements to the model
will reveal this trend of a speed–accuracy trade-off. We conclude by
hypothesizing that, with higher demands on the initial speed of force rise, the
transition has to start sooner because of limitations imposed by neuromuscular
lags, thus causing greater errors in the fingertip force vector direction upon
contact. This hypothesis is already indirectly supported by experimental data
showing that healthy subjects cannot perform the transition without incurring
error in the initial force direction (Venkadesan & Valero-Cuevas 2008), and a
report showing that reducing the friction of the target surface advances the time
of the transition (Medina et al. 2007).

A further comment on the prevailing theories of speed–accuracy trade-off is
warranted. Starting with the paper by Paul Fitts, noise in the sensorimotor
system has been implicated as the origin of speed–accuracy trade-offs in human
behaviour (Fitts 1954). With the discovery of signal-dependent noise in muscles,
most contemporary research considers noise as the reason for speed–accuracy
trade-offs (Meyer et al. 1990; Harris & Wolpert 1998, 2006; Todorov 2004, 2005).
However, there was an alternative theory proposed by Card et al. (1983)
explaining speed–accuracy trade-offs based on time delays in deterministic
systems. This theory has been challenged by many on the basis of unrealistic
assumptions, such as the existence of ‘submovements’ for any movement, etc.
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Figure 5. Transition of the joint torque vectors for increasing demands on the initial force
magnitude (what we call ‘speed’). Despite a 20! range in initial fingertip force magnitude (6.6!
range in k1), a perfectly accurate solution was always found, i.e. the fingertip force vector was
perfectly vertically oriented upon contact and produced the required force magnitude. The
orientation of the joint torque vectors and the joint angles during the transition provide some
insights into this result. (a) Orientation of the joint torque vector has a ‘double dip’ for higher
speed demands (k1R0.05), something akin to a ‘corrective’ torque to optimize the finger’s state
upon contact. Note that this corrective action occurs even though our model has no sensory
feedback. (b) Magnitude increases only after reorientation of the joint torque vector. (c) These
corrective torques, however, were associated with intermediate postures that were unrealistically
hyperextended at the DIP joint. As seen here, the magnitude of an unrealistic hyperextension
of the DIP joint grows almost linearly with increasing speed demands, i.e. increasing k1. (d ) For
k1Z0.1 N m, the figure shows the unrealistic finger posture attained at tZK18 ms. We show only
four of six values of k1 in (a) and (b) for clarity.

M. Venkadesan and F. J. Valero-Cuevas1176
(see Meyer et al. (1990, pp. 192–3) for a detailed critique of Card et al.’s theory).
A contribution of our work is, therefore, to discover speed–accuracy trade-offs in
the context of deterministic control transitions with physiologically plausible
neuromuscular lags. At the very least, our model’s findings complement and
serve as an alternative to prevailing noise-based theories. At best, it proposes a
deterministic route to speed–accuracy trade-offs that occur for the ubiquitous,
yet critical, task of transitioning between control regimes.
(c ) Near-optimal performance by humans

The physical bounds of performance identified by our simple model of the
finger robustly reproduce experimental observations made on the real human
despite excluding some known physiological properties and other simplifications.
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Our results therefore suggest that our model implements some fundamental
mechanism whose importance overrides the simplifying assumptions. A possible
alternative result could have been that our solutions always converged to large
residual costs (or did not converge at all) because requiring torques to transition
before contact is simply mechanically detrimental. By contrast, we find that our
idealized model was able to arrive at perfect solutions whose predicted torque
time histories replicate the main features of the biological data. In addition, the
details of the torque transitions are sensitive to changes in the desired initial
force magnitude, which argues for a gradient in performance for which some form
of optimization is beneficial. These results lead us to conclude that the behaviour
of the nervous system is indeed near-optimal. Even if the reader disagrees that
the similarity of the predictions with the experimental data implies near-
optimality of human performance, it is clear that the resemblance suggests, at
the very least, that the transitions in control command in this context are mostly
governed by mechanical principles and requirements (as opposed to being
dominated by non-mechanical neural/behavioural/idiosyncratic constraints) and
indeed approach the physical boundaries of performance. This conclusion agrees
well with, and extends into, the dynamical domain, prior work showing that the
control of finger musculature for force production is mostly governed by
mechanical principles (Valero-Cuevas et al. 1998).
(d ) Scope and limitations

We have presented here two main results. (i) The experimental observations of
anticipatory switching of joint torques and the sequencing of the joint torque
vector’s angle change followed by magnitude can both be explained solely by
neuromuscular lags in the context of control switching. (ii) Our modelling
suggests that, when switching between mutually incompatible control regimes,
speed–accuracy trade-offs arise solely from neuromuscular lags. This is an
alternative explanation to many current theories that require stochastic elements
in their models for speed–accuracy trade-offs.

While our results (figure 5) support the hypothesis that speed–accuracy trade-
offs can arise solely from neuromuscular lags, we do not have a definitive proof.
A definitive proof would require solving a constrained optimization and
verification that the solution is a unique global optimum. While a constrained
optimization is something we will pursue in the future, guaranteeing that the
solution is a unique global optimum probably requires analytical proofs (not just
numerical demonstration), which is beyond the scope of this first numerical
exploration of biomechanical finger contact transitions. However, all the
solutions we found made the cost function vanish, i.e. there are no other
solutions with a lower value of the cost function. Therefore, we can guarantee
that all solutions were globally optimal (i.e. smallest possible cost, though
possibly non-unique) and probably non-degenerate.
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